Publication:
Cardio-haemodynamic assessment and venous lactate in severe dengue: Relationship with recurrent shock and respiratory distress

No Thumbnail Available
Date
2017-07-01
Journal Title
Journal ISSN
Volume Title
Publisher
Research Projects
Organizational Units
Journal Issue
Abstract
BACKGROUND: Dengue can cause plasma leakage that may lead to dengue shock syndrome (DSS). In approximately 30% of DSS cases, recurrent episodes of shock occur. These patients have a higher risk of fluid overload, respiratory distress and poor outcomes. We investigated the association of echocardiographically-derived cardiac function and intravascular volume parameters plus lactate levels, with the outcomes of recurrent shock and respiratory distress in severe dengue. METHODS/PRINCIPLE FINDINGS: We performed a prospective observational study in Paediatric and adult ICU, at the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam. Patients with dengue were enrolled within 12 hours of admission to paediatric or adult ICU. A haemodynamic assessment and portable echocardiograms were carried out daily for 5 days from enrolment and all interventions recorded. 102 patients were enrolled; 22 patients did not develop DSS, 48 had a single episode of shock and 32 had recurrent shock. Patients with recurrent shock had a higher enrolment pulse than those with 1 episode or no shock (median: 114 vs. 100 vs. 100 b/min, P = 0.002), significantly lower Stroke Volume Index (SVI), (median: 21.6 vs. 22.8 vs. 26.8mls/m2, P<0.001) and higher lactate levels (4.2 vs. 2.9 vs. 2.2 mmol/l, P = 0.001). Higher SVI and worse left ventricular function (higher Left Myocardial Performance Index) on study days 3-5 was associated with the secondary endpoint of respiratory distress. There was an association between the total IV fluid administered during the ICU admission and respiratory distress (OR: 1.03, 95% CI 1.01-1.06, P = 0.001). Admission lactate levels predicted patients who subsequently developed recurrent shock (P = 0.004), and correlated positively with the total IV fluid volume received (rho: 0.323, P = 0.001) and also with admission ALT (rho: 0.764, P<0.001) and AST (rho: 0.773, P<0.001). CONCLUSIONS/SIGNIFICANCE: Echo-derived intravascular volume assessment and venous lactate levels can help identify dengue patients at high risk of recurrent shock and respiratory distress in ICU. These findings may serve to, not only assist in the management of DSS patients, but also these haemodynamic endpoints could be used in future dengue fluid intervention trials.
Description
Keywords
Citation
Collections