Quantum Multi Prover Interactive Proofs with Communicating Provers

Ben-Or, Michael
Hassidim, Avinatan
Pilpel, Haran
Journal Title
Journal ISSN
Volume Title
Multi Prover Interactive Proof systems (MIPs)were first presented in a cryptographic context, but ever since they were used in various fields. Understanding the power of MIPs in the quantum context raises many open problems, as there are several interesting models to consider. For example, one can study the question when the provers share entanglement or not, and the communication between the verifier and the provers is quantum or classical. While there are several partial results on the subject, so far no one presented an efficient scheme for recognizing NEXP (or NP with logarithmic communication), except for [KM03], in the case there is no entanglement (and of course no communication between the provers). We introduce another variant of Quantum MIP, where the provers do not share entanglement, the communication between the verifier and the provers is quantum, but the provers are unlimited in the classical communication between them. At first, this model may seem very weak, as provers who exchange information seem to be equivalent in power to a simple prover. This in fact is not the case - we show that any language in NEXP can be recognized in this model efficiently, with just two provers and two rounds of communication, with a constant completeness-soundness gap.
Quantum Physics