Optimal Acyclic Hamiltonian Path Completion for Outerplanar Triangulated st-Digraphs (with Application to Upward Topological Book Embeddings)

Mchedlidze, Tamara
Symvonis, Antonios
Journal Title
Journal ISSN
Volume Title
Given an embedded planar acyclic digraph G, we define the problem of "acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM)" to be the problem of determining an hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to a hamiltonian digraph. Our results include: --We provide a characterization under which a triangulated st-digraph G is hamiltonian. --For an outerplanar triangulated st-digraph G, we define the st-polygon decomposition of G and, based on its properties, we develop a linear-time algorithm that solves the Acyclic-HPCCM problem with at most one crossing per edge of G. --For the class of st-planar digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. We infer (based on this equivalence) for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge. To the best of our knowledge, it is the first time that edge-crossing minimization is studied in conjunction with the acyclic hamiltonian completion problem and the first time that an optimal algorithm with respect to spine crossing minimization is presented for upward topological book embeddings.
Computer Science - Data Structures and Algorithms, Computer Science - Discrete Mathematics, G.2.2