Relaxation dynamics and interrupted coarsening in irrationally frustrated superconducting arrays

Date
Authors
Jeon, Gun Sang
Lee, Sung Jong
Kim, Bongsoo
Choi, M. Y.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Equilibrium and non-equilibrium relaxation behaviors of two-dimensional superconducting arrays are investigated via numerical simulations at low temperatures in the presence of incommensurate transverse magnetic fields, with frustration parameter f= (3-\sqrt{5})/2. We find that the non-equilibrium relaxation, beginning with random initial states quenched to low temperatures, exhibits a three-stage relaxation of chirality autocorrelations. At the early stage, the relaxation is found to be described by the von Schweidler form. Then it exhibits power-law behavior in the intermediate time scale and faster decay in the long-time limit, which together can be fitted to the Ogielski form; for longer waiting times, this crosses over to a stretched exponential form. We argue that the power-law behavior in the intermediate time scale may be understood as a consequence of the coarsening behavior, leading to the local vortex order corresponding to f=2/5 ground-state configurations. High mobility of the vortices in the domain boundaries, generating slow wandering motion of the domain walls, may provide mechanism of dynamic heterogeneity and account for the long-time stretched exponential relaxation behavior. It is expected that such meandering fluctuations of the low-temperature structure give rise to finite resistivity at those low temperatures; this appears consistent with the zero-temperature resistive transition in the limit of irrational frustration.
Comment: 9 pages, 18 figures
Keywords
Condensed Matter - Statistical Mechanics, Condensed Matter - Superconductivity
Citation
Collections