Twisted cohomology of the Hilbert schemes of points on surfaces

Date
Authors
Nieper-Wisskirchen, Marc A.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
We calculate the cohomology spaces of the Hilbert schemes of points on surfaces with values in locally constant systems. For that purpose, we generalise I. Grojnoswki's and H. Nakajima's description of the ordinary cohomology in terms of a Fock space representation to the twisted case. We further generalise M. Lehn's work on the action of the Virasoro algebra to the twisted case. Building on work by M. Lehn and Ch. Sorger, we then give an explicit description of the cup-product in the twisted case whenever the surface has a numerically trivial canonical divisor. We formulate our results in a way that they apply to the projective and non-projective case in equal measure. As an application of our methods, we give explicit models for the cohomology rings of the generalised Kummer varieties and of a series of certain even dimensional Calabi--Yau manifolds.
Comment: 16 pages
Keywords
Mathematics - Algebraic Geometry, Mathematics - Algebraic Topology, 14M99
Citation
Collections