Phase-space structures II: Hierarchical Structure Finder

Maciejewski, M.
Colombi, S.
Springel, V.
Alard, C.
Bouchet, F. R.
Journal Title
Journal ISSN
Volume Title
A new multi-dimensional Hierarchical Structure Finder (HSF) to study the phase-space structure of dark matter in N-body cosmological simulations is presented. The algorithm depends mainly on two parameters, which control the level of connectivity of the detected structures and their significance compared to Poisson noise. By working in 6D phase-space, where contrasts are much more pronounced than in 3D position space, our HSF algorithm is capable of detecting subhaloes including their tidal tails, and can recognise other phase-space structures such as pure streams and candidate caustics. If an additional unbinding criterion is added, the algorithm can be used as a self-consistent halo and subhalo finder. As a test, we apply it to a large halo of the Millennium Simulation, where 19 % of the halo mass are found to belong to bound substructures, which is more than what is detected with conventional 3D substructure finders, and an additional 23-36 % of the total mass belongs to unbound HSF structures. The distribution of identified phase-space density peaks is clearly bimodal: high peaks are dominated by the bound structures and low peaks belong mostly to tidal streams. In order to better understand what HSF provides, we examine the time evolution of structures, based on the merger tree history. Bound structures typically make only up to 6 orbits inside the main halo. Still, HSF can identify at the present time at least 80 % of the original content of structures with a redshift of infall as high as z <= 0.3, which illustrates the significant power of this tool to perform dynamical analyses in phase-space.
Comment: Submitted to MNRAS, 24 pages, 18 figures