Produit d'entrelacement et action triangulaire d'alg\`ebres de Lie

Date
Authors
Coffi-Nketsia, Barben-Jean
Haddad, Labib
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Formal actions of Lie algebras over vector spaces are introduced in a purely algebraic way, as a mimic of infinitesimal operations of Banach Lie algebras over Banach analytic manifolds. In analogy with the case of abstract groups, complete wreath products and triangular actions are then defined for Lie algebras acting "en cascade" over vector spaces. Finally, a Kaloujnine-Krasner type theorem for Lie algebra extensions is proved. ----- En mimant les lois d'op\'erations infinit\'esimales des alg\`ebres de Lie sur les vari\'et\'e s analytiques banachiques, on introduit de mani\`ere purement alg\`ebrique la notion d'action formelle d'une alg\`ebre de Lie sur un espace vectoriel. Ensuite, par analogie avec le cas des groupes abstraits, et en faisant op\'erer les alg\`ebres de Lie "en cascade", on d\'efinit produit d'entrelacement ("wreath product") et action triangulaire pour les alg\`ebres de Lie. On d\'emontre enfin un th\'eor\`eme du type Kaloujnine-Krasner pour les extensions d'alg\`ebres de Lie.
Comment: The french version (p. 1-9) is followed by a "moderately detailed" english summary (p. 9-15)
Keywords
Mathematics - Representation Theory
Citation
Collections