Polarization Patterns in Pulsar Radio Emission

McKinnon, Mark M.
Journal Title
Journal ISSN
Volume Title
A variety of intriguing polarization patterns are created when polarization observations of the single pulses from radio pulsars are displayed in a two-dimensional projection of the Poincare sphere. In many pulsars, the projections produce two clusters of data points that reside at antipodal points on the sphere. The clusters are formed by fluctuations in polarization amplitude that are parallel to the unit vectors representing the polarization states of the wave propagation modes in the pulsar magnetosphere. In other pulsars, however, the patterns are more complex, resembling annuli and bow ties or bars. The formation of these complex patterns is not understood and largely unexplored. An empirical model of pulsar polarization is used to show that these patterns arise from polarization fluctuations that are perpendicular to the mode vectors. The model also shows that the modulation index of the polarization amplitude is an indicator of polarization pattern complexity. A stochastic version of generalized Faraday rotation can cause the orientation of the polarization vectors to fluctuate and is a possible candidate for the perpendicular fluctuations incorporated in the model. Alternative models indicate that one mode experiences perpendicular fluctuations and the other does not, suggesting that the fluctuations could also be due to a mode-selective random process, such as scattering in the magnetosphere. A polarization stability analysis of the patterns implies that processes intrinsic to the emission are more effective in depolarizing the emission than fluctuations in the orientation of its polarization vector.
Comment: 30 pages, 4 figures, Accepted for publication in ApJ