Sharp Estimates for the $\bar{\partial}$-Neumann Problem on Regular Coordinate Domains

Date
Authors
Catlin, David W.
Cho, Jae-Seong
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
This paper treats subelliptic estimates for the $\bar{\partial}$-Neumann problem on a class of domains known as regular coordinate domains. Our main result is that the largest subelliptic gain for a regular coordinate domain is bounded below by a purely algebraic number, the inverse of twice the multiplicity of the ideal associated to a given boundary point.
Comment: 38 pages
Keywords
Mathematics - Complex Variables, 32W05, 35N15
Citation
Collections