Towards the Modelling of the Second Solar Spectrum

Date
Authors
Bueno, J. Trujillo
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
This paper addresses the modelling issue of the linearly-polarized solar limb spectrum, which is due to scattering processes and it offers a rich diagnostic potential for exploring solar magnetic fields via the Hanle effect. However, this so-called second solar spectrum is full of mysterious spectral features, which cannot be understood with simplified polarization transfer theories, thus suggesting that the underlying scattering physics is more complex than previously thought. In this paper we argue that the physical understanding of the second solar spectrum requires the consideration of scattering processes in multilevel atomic models, taking fully into account the transfer of atomic polarization among all the levels involved. The consideration of lower-level atomic polarization leads to non-linear and non-local coupled sets of equations, even for the two-level model atom case considered in this paper. The unknowns of the problem are the irreducible tensor components of the atomic density matrix whose self-consistent values have first to be obtained to be able to calculate the emergent Stokes profiles. To solve numerically this non-LTE problem of the second kind we present some iterative methods that are very suitable for developing a general multilevel scattering polarization code. We demonstrate that there exists metastable-level atomic polarization in the solar chromosphere, which suggests that the solution to some recently-formulated "paradoxes" is to be found by carefully revising our current ideas about the chromospheric magnetic field.
Comment: 24 pages, 6 figures
Keywords
Astrophysics
Citation
Collections