Multiphase modeling and qualitative analysis of the growth of tumor cords

Date
Authors
Tosin, Andrea
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
In this paper a macroscopic model of tumor cord growth is developed, relying on the mathematical theory of deformable porous media. Tumor is modeled as a saturated mixture of proliferating cells, extracellular fluid and extracellular matrix, that occupies a spatial region close to a blood vessel whence cells get the nutrient needed for their vital functions. Growth of tumor cells takes place within a healthy host tissue, which is in turn modeled as a saturated mixture of non-proliferating cells. Interactions between these two regions are accounted for as an essential mechanism for the growth of the tumor mass. By weakening the role of the extracellular matrix, which is regarded as a rigid non-remodeling scaffold, a system of two partial differential equations is derived, describing the evolution of the cell volume ratio coupled to the dynamics of the nutrient, whose higher and lower concentration levels determine proliferation or death of tumor cells, respectively. Numerical simulations of a reference two-dimensional problem are shown and commented, and a qualitative mathematical analysis of some of its key issues is proposed.
Comment: 34 pages, 18 figures
Keywords
Mathematical Physics, Mathematics - Analysis of PDEs, Quantitative Biology - Tissues and Organs, 35R35, 92B05, 92C37
Citation
Collections