Minimal weight expansions in Pisot bases

Date
Authors
Frougny, Christiane
Steiner, Wolfgang
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
For applications to cryptography, it is important to represent numbers with a small number of non-zero digits (Hamming weight) or with small absolute sum of digits. The problem of finding representations with minimal weight has been solved for integer bases, e.g. by the non-adjacent form in base~2. In this paper, we consider numeration systems with respect to real bases $\beta$ which are Pisot numbers and prove that the expansions with minimal absolute sum of digits are recognizable by finite automata. When $\beta$ is the Golden Ratio, the Tribonacci number or the smallest Pisot number, we determine expansions with minimal number of digits $\pm1$ and give explicitely the finite automata recognizing all these expansions. The average weight is lower than for the non-adjacent form.
Keywords
Computer Science - Discrete Mathematics, Computer Science - Cryptography and Security, Mathematics - Number Theory
Citation
Collections