Detailed Studies of Pixelated CZT Detectors Grown with the Modified Horizontal Bridgman Method

Jung, I.
Krawczynski, H.
Burger, A.
Guo, M.
Groza, M.
Journal Title
Journal ISSN
Volume Title
The detector material Cadmium Zinc Telluride (CZT), known for its high resolution over a broad energy range, is produced mainly by two methods: the Modified High-Pressure Bridgman (MHB) and the High-Pressure Bridgman (HPB) process. This study is based on MHB CZT substrates from the company Orbotech Medical Solutions Ltd. with a detector size of 2.0x2.0x0.5 cm^3, 8x8 pixels and a pitch of 2.46 mm. Former studies have emphasized only on the cathode material showing that high-work-function improve the energy resolution at lower energies. Therfore, we studied the influence of the anode material while keeping the cathode material constant. We used four different materials: Indium, Titanium, Chromium and Gold with work-functions between 4.1 eV and 5.1 eV. The low work-function materials Indium and Titanium achieved the best performance with energy resolutions: 2.0 keV (at 59 keV) and 1.9 keV (at 122 keV) for Titanium; 2.1 keV (at 59 keV) and 2.9 keV (at 122 keV) for Indium. These detectors are very competitive compared with the more expensive ones based on HPB material if one takes the large pixel pitch of 2.46 mm into account. We present a detailed comparison of our detector response with 3-D simulations, from which we determined the mobility-lifetime-products for electrons and holes. Finally, we evaluated the temperature dependency of the detector performance and mobility-lifetime-products, which is important for many applications. With decreasing temperature down to -30C the breakdown voltage increases and the electron mobility-lifetime-product decreases by about 30% over a range from 20C to -30C. This causes the energy resolution to deteriorate, but the concomitantly increasing breakdown voltage makes it possible to increase the applied bias voltage and restore the full performance.
Comment: Accepted for publication in Astroparticle Physics, 25 pages, 13 figures