K-theory of quiver varieties, q-Fock space and nonsymmetric Macdonald polynomials

Date
Authors
Nagao, Kentaro
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
We have two constructions of the level-$(0,1)$ irreducible representation of the quantum toroidal algebra of type $A$. One is due to Nakajima and Varagnolo-Vasserot. They constructed the representation on the direct sum of the equivariant K-groups of the quiver varieties of type $\hat{A}$. The other is due to Saito-Takemura-Uglov and Varagnolo-Vasserot. They constructed the representation on the q-deformed Fock space introduced by Kashiwara-Miwa-Stern. In this paper we give an explicit isomorphism between these two constructions. For this purpose we construct simultaneous eigenvectors on the q-Fock space using nonsymmetric Macdonald polynomials. Then the isomorphism is given by corresponding these vectors to the torus fixed points on the quiver varieties.
Comment: 28 pages
Keywords
Mathematics - Quantum Algebra, Mathematics - Representation Theory, 17B37 (Primary), 33C52, 14D21, 16G20 (Secondary)
Citation
Collections