Quantum $\frak {gl}_\infty$, infinite $q$-Schur algebras and their representations

Date
Authors
Du, Jie
Fu, Qiang
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
In this paper, we investigate the structure and representations of the quantum group ${\mathbf{U}(\infty)}=\mathbf U_\upsilon(\frak{gl}_\infty)$. We will present a realization for $\mathbf{U}(\infty)$, following Beilinson--Lusztig--MacPherson (BLM) \cite{BLM}, and show that the natural algebra homomorphism $\zeta_r$ from $\mathbf{U}(\infty)$ to the infinite $q$-Schur algebra ${\boldsymbol{\mathcal S}}(\infty,r)$ is not surjective for any $r\geq 1$. We will give a BLM type realization for the image $\mathbf{U}(\infty,r):=\zeta_r(\mathbf{U}(\infty))$ and discuss its presentation in terms of generators and relations. We further construct a certain completion algebra $\hat{\boldsymbol{\mathcal K}}^\dagger(\infty)$ so that $\zeta_r$ can be extended to an algebra epimorphism $\tilde\zeta_r:\hat{\boldsymbol{\mathcal K}}^\dagger(\infty)\to{\boldsymbol{\mathcal S}}(\infty,r)$. Finally we will investigate the representation theory of ${\bf U}(\infty)$, especially the polynomial representations of ${\bf U}(\infty)$.
Keywords
Mathematics - Quantum Algebra, Mathematics - Representation Theory
Citation
Collections