Anisotropic Singular Integrals in Product Spaces

Date
Authors
Li, Baode
Bownik, Marcin
Yang, Dachun
Zhou, Yuan
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Let $A_i$ for $i=1, 2$ be an expansive dilation, respectively, on ${\mathbb R}^n$ and ${\mathbb R}^m$ and $\vec A\equiv(A_1, A_2)$. Denote by ${\mathcal A}_\infty(\rnm; \vec A)$ the class of Muckenhoupt weights associated with $\vec A$. The authors introduce a class of anisotropic singular integrals on $\mathbb R^n\times\mathbb R^m$, whose kernels are adapted to $\vec A$ in the sense of Bownik and have vanishing moments defined via bump functions in the sense of Stein. Then the authors establish the boundedness of these anisotropic singular integrals on $L^q_w(\mathbb R^n\times\mathbb R^m)$ with $q\in(1, \infty)$ and $w\in\mathcal A_q(\mathbb R^n\times\mathbb R^m; \vec A)$ or on $H^p_w(\mathbb R^n\times\mathbb R^m; \vec A)$ with $p\in(0, 1]$ and $w\in\mathcal A_\infty(\mathbb R^n \times\mathbb R^m; \vec A)$. These results are also new even when $w=1$.
Comment: Sci. China Math., to appear
Keywords
Mathematics - Classical Analysis and ODEs, Mathematics - Functional Analysis, 42B30 (Primary), 42B20, 42B25, 42B35 (Secondary)
Citation
Collections