A method of moments estimator of tail dependence

Date
Authors
Einmahl, John H. J.
Krajina, Andrea
Segers, Johan
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
In the world of multivariate extremes, estimation of the dependence structure still presents a challenge and an interesting problem. A procedure for the bivariate case is presented that opens the road to a similar way of handling the problem in a truly multivariate setting. We consider a semi-parametric model in which the stable tail dependence function is parametrically modeled. Given a random sample from a bivariate distribution function, the problem is to estimate the unknown parameter. A method of moments estimator is proposed where a certain integral of a nonparametric, rank-based estimator of the stable tail dependence function is matched with the corresponding parametric version. Under very weak conditions, the estimator is shown to be consistent and asymptotically normal. Moreover, a comparison between the parametric and nonparametric estimators leads to a goodness-of-fit test for the semiparametric model. The performance of the estimator is illustrated for a discrete spectral measure that arises in a factor-type model and for which likelihood-based methods break down. A second example is that of a family of stable tail dependence functions of certain meta-elliptical distributions.
Comment: Published in at http://dx.doi.org/10.3150/08-BEJ130 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)
Keywords
Mathematics - Statistics Theory
Citation
Collections