(GL(n+1,F),GL(n,F)) is a Gelfand pair for any local field F

Date
Authors
Aizenbud, Avraham
Gourevitch, Dmitry
Sayag, Eitan
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Let F be an arbitrary local field. Consider the standard embedding of GL(n,F) into GL(n+1,F) and the two-sided action of GL(n,F) \times GL(n,F) on GL(n+1,F). In this paper we show that any GL(n,F) \times GL(n,F)-invariant distribution on GL(n+1,F) is invariant with respect to transposition. We show that this implies that the pair (GL(n+1,F),GL(n,F)) is a Gelfand pair. Namely, for any irreducible admissible representation $(\pi,E)$ of (GL(n+1,F), $$dimHom_{GL(n,F)}(E,\cc) \leq 1.$$ For the proof in the archimedean case we develop several new tools to study invariant distributions on smooth manifolds.
Comment: v3: Archimedean Localization principle excluded due to a gap in its proof. Another version of Localization principle can be found in arXiv:0803.3395v2 [RT]. v4: an inaccuracy with Bruhat filtration fixed. See Theorem 4.2.1 and Appendix B
Keywords
Mathematics - Representation Theory, 22E,22E45,20G05,20G25,46F99
Citation
Collections