Wilsonian renormalization, differential equations and Hopf algebras

Date
Authors
Krajewski, Thomas
Martinetti, Pierre
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
In this paper, we present an algebraic formalism inspired by Butcher's B-series in numerical analysis and the Connes-Kreimer approach to perturbative renormalization. We first define power series of non linear operators and propose several applications, among which the perturbative solution of a fixed point equation using the non linear geometric series. Then, following Polchinski, we show how perturbative renormalization works for a non linear perturbation of a linear differential equation that governs the flow of effective actions. Then, we define a general Hopf algebra of Feynman diagrams adapted to iterations of background field effective action computations. As a simple combinatorial illustration, we show how these techniques can be used to recover the universality of the Tutte polynomial and its relation to the $q$-state Potts model. As a more sophisticated example, we use ordered diagrams with decorations and external structures to solve the Polchinski's exact renormalization group equation. Finally, we work out an analogous construction for the Schwinger-Dyson equations, which yields a bijection between planar $\phi^{3}$ diagrams and a certain class of decorated rooted trees.
Comment: 42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatorics and physics" held at Max Planck Institut fuer Mathematik in Bonn in march 2007, some misprints corrected
Keywords
High Energy Physics - Theory
Citation
Collections