On epimorphisms and monomorphisms of Hopf algebras

Date
Authors
Chirvasitu, Alexandru
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
We provide examples of non-surjective epimorphisms $H\to K$ in the category of Hopf algebras over a field, even with the additional requirement that $K$ have bijective antipode, by showing that the universal map from a Hopf algebra to its enveloping Hopf algebra with bijective antipode is an epimorphism in $\halg$, although it is known that it need not be surjective. Dual results are obtained for the problem of whether monomorphisms in the category of Hopf algebras are necessarily injective. We also notice that these are automatically examples of non-faithfully flat and respectively non-faithfully coflat maps of Hopf algebras.
Comment: 17 pages; changed the abstract, revised introduction, shortened some proofs; to appear in J. Algebra
Keywords
Mathematics - Rings and Algebras, Mathematics - Category Theory, 16W30, 18A20, 18A30, 18A40
Citation
Collections