Asymptotic stability region of slotted-Aloha

Date
Authors
Bordenave, Charles
McDonald, David
Proutiere, Alexandre
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
We analyze the stability of standard, buffered, slotted-Aloha systems. Specifically, we consider a set of $N$ users, each equipped with an infinite buffer. Packets arrive into user $i$'s buffer according to some stationary ergodic Markovian process of intensity $\lambda_i$. At the beginning of each slot, if user $i$ has packets in its buffer, it attempts to transmit a packet with fixed probability $p_i$ over a shared resource / channel. The transmission is successful only when no other user attempts to use the channel. The stability of such systems has been open since their very first analysis in 1979 by Tsybakov and Mikhailov. In this paper, we propose an approximate stability condition, that is provably exact when the number of users $N$ grows large. We provide theoretical evidence and numerical experiments to explain why the proposed approximate stability condition is extremely accurate even for systems with a restricted number of users (even two or three). We finally extend the results to the case of more efficient CSMA systems.
Comment: 16 pages
Keywords
Computer Science - Information Theory
Citation
Collections