PC1643+4631A,B: The Lyman-Alpha Forest at the Edge of Coherence

Date
Authors
Casey, Caitlin M.
Impey, Christopher D.
Petry, Catherine E.
Marble, Andrew R.
Dave, Romeel
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
This is the first measurement and detection of coherence in the intergalactic medium (IGM) at substantially high redshift (z~3.8) and on large physical scales (~2.5 h^-1 Mpc). We perform the measurement by presenting new observations from Keck LRIS of the high redshift quasar pair PC 1643+4631A, B and their Ly-alpha absorber coincidences. This experiment extends multiple sightline quasar absorber studies to higher redshift, higher opacity, larger transverse separation, and into a regime where coherence across the IGM becomes weak and difficult to detect. We fit 222 discrete Ly-alpha absorbers to sightline A and 211 to sightline B. Relative to a Monte Carlo pairing test (using symmetric, nearest neighbor matching) the data exhibit a 4sigma excess of pairs at low velocity splitting (<150 km/s), thus detecting coherence on transverse scales of ~2.5 h^-1 Mpc. We use spectra extracted from an SPH simulation to analyze symmetric pair matching, transmission distributions as a function of redshift and compute zero-lag cross-correlations to compare with the quasar pair data. The simulations agree with the data with the same strength (~4sigma) at similarly low velocity splitting above random chance pairings. In cross-correlation tests, the simulations agree when the mean flux (as a function of redshift) is assumed to follow the prescription given by Kirkman et al. (2005). While the detection of flux correlation (measured through coincident absorbers and cross-correlation amplitude) is only marginally significant, the agreement between data and simulations is encouraging for future work in which even better quality data will provide the best insight into the overarching structure of the IGM and its understanding as shown by SPH simulations.
Comment: 15 pages, 11 figures; accepted for publication in Astronomical Journal
Keywords
Astrophysics
Citation
Collections