On the evolution of clustering of 24um-selected galaxies

Date
Authors
Magliocchetti, M.
Cirasuolo, M.
McLure, R. J.
Dunlop, J. S.
Almaini, O.
Foucaud, S.
De Zotti, G.
Simpson, C.
Sekiguchi, K.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
This paper investigates the clustering properties of a complete sample of 1041 24um-selected sources brighter than F[24um]=400 uJy in the overlapping region between the SWIRE and UKIDSS UDS surveys. We have concentrated on the two (photometric) interval ranges z=[0.6-1.2] (low-z sample) and z>1.6 (high-z sample) as it is in these regions were we expect the mid-IR population to be dominated by intense dust-enshrouded activity such as star formation and black hole accretion. Investigations of the angular correlation function produce a correlation length are r0~15.9 Mpc for the high-z sample and r0~8.5 Mpc for the low-z one. Comparisons with physical models reveal that the high-z sources are exclusively associated with very massive (M>~10^{13} M_sun)haloes, comparable to those which locally host groups-to-clusters of galaxies, and are very common within such (rare) structures. Conversely, lower-z galaxies are found to reside in smaller halos (M_min~10^{12} M_sun) and to be very rare in such systems. While recent studies have determined a strong evolution of the 24um luminosity function between z~2 and z~0, they cannot provide information on the physical nature of such an evolution. Our clustering results instead indicate that this is due to the presence of different populations of objects inhabiting different structures, as active systems at z<~1.5 are found to be exclusively associated with low-mass galaxies, while very massive sources appear to have concluded their active phase before this epoch. Finally, we note that the small-scale clustering data seem to require steep profiles for the distribution of galaxies within their halos. This is suggestive of close encounters and/or mergers which could strongly favour both AGN and star-formation activity.
Comment: 13 pages, 8 figures, to appear in MNRAS
Keywords
Astrophysics
Citation
Collections