Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces

Date
Authors
Danchin, R.
Paicu, M.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
This paper is devoted to the study of the Cauchy problem for the Boussinesq system with partial viscosity in dimension $N\geq3.$ First we prove a global existence result for data in Lorentz spaces satisfying a smallness condition which is at the scaling of the equations. Second, we get a uniqueness result in Besov spaces with {\it negative} indices of regularity (despite the fact that there is no smoothing effect on the temperature). The proof relies on a priori estimates with loss of regularity for the nonstationary Stokes system with convection. As a corollary, we obtain a global existence and uniqueness result for small data in Lorentz spaces.
Comment: 24 pages. Physica D, in press
Keywords
Mathematics - Analysis of PDEs, 35Q35,76N10,35B65,76D99
Citation
Collections