On the Conditions for Neutron-Rich Gamma-Ray Burst Outflows

Metzger, Brian D.
Thompson, Todd A.
Quataert, Eliot
Journal Title
Journal ISSN
Volume Title
We calculate the structure and neutron content of neutrino-heated MHD winds driven from the surface of newly-formed magnetars (``proto-magnetars'') and from the midplane of hyper-accreting disks, two of the possible central engines for gamma-ray bursts (GRBs) and hyper-energetic supernovae (SNe). Both the surface of proto-magnetars and the midplane of neutrino-cooled accretion flows (NDAFs) are electron degenerate and neutron-rich (neutron-to-proton ratio n/p >> 1). If this substantial free neutron excess is preserved to large radii in ultra-relativistic outflows, several important observational consequences may result. Weak interaction processes, however, can drive n/p to ~1 in the nondegenerate regions that obtain just above the surfaces of NDAFs and proto-magnetars. Our calculations show that mildly relativistic neutron-rich outflows from NDAFs are possible in the presence of a strong poloidal magnetic field. However, we find that neutron-rich winds possess a minimum mass-loss rate that likely precludes simultaneously neutron-rich and ultra-relativistic (Lorentz factor > 100) NDAF winds accompanying a substantial accretion power. In contrast, proto-magnetars are capable of producing neutron-rich long-duration GRB outflows ~10-30 seconds following core bounce for sub-millisecond rotation periods; such outflows would, however, accompany only extremely energetic events, in which the GRB + SN energy budget exceeds ~ 4e52 ergs. Neutron-rich highly relativistic outflows may also be produced during some short-duration GRBs by geometrically thick accretion disks formed from compact object mergers. The implications for r-process nucleosynthesis, optical transients due to non-relativistic neutron-rich winds, and Nickel production in proto-magnetar and NDAF winds are also briefly discussed.
Comment: 24 pages, 7 figures, submitted to ApJ