On the mass-critical generalized KdV equation

Date
Authors
Killip, Rowan
Kwon, Soonsik
Shao, Shuanglin
Visan, Monica
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
We consider the mass-critical generalized Korteweg--de Vries equation $$(\partial_t + \partial_{xxx})u=\pm \partial_x(u^5)$$ for real-valued functions $u(t,x)$. We prove that if the global well-posedness and scattering conjecture for this equation failed, then, conditional on a positive answer to the global well-posedness and scattering conjecture for the mass-critical nonlinear Schr\"odinger equation $(-i\partial_t + \partial_{xx})u=\pm (|u|^4u)$, there exists a minimal-mass blowup solution to the mass-critical generalized KdV equation which is almost periodic modulo the symmetries of the equation. Moreover, we can guarantee that this minimal-mass blowup solution is either a self-similar solution, a soliton-like solution, or a double high-to-low frequency cascade solution.
Comment: References added/updated
Keywords
Mathematics - Analysis of PDEs, 35Q55
Citation
Collections