Linear forms and complementing sets of integers

Date
Authors
Nathanson, Melvyn B.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Let $\varphi(x_1,\ldots,x_h,y) = u_1x_1 + \cdots + u_hx_h+vy$ be a linear form with nonzero integer coefficients $u_1,\ldots, u_h, v.$ Let $\mathcal{A} = (A_1,\ldots, A_h)$ be an $h$-tuple of finite sets of integers and let $B$ be an infinite set of integers. Define the representation function associated to the form $\varphi$ and the sets \mca\ and $B$ as follows: $$ R^{(\varphi)}_{\mathcal{A},B}(n) = \text{card}\left( \left\{ (a_1,\ldots, a_h,b) \in A_1 \times \cdots \times A_h \times B: \varphi(a_1, \ldots , a_h,b ) = n \right\} \right).$$ If this representation function is constant, then the set $B$ is periodic and the period of $B$ will be bounded in terms of the diameter of the finite set $\{ \varphi(a_1,\ldots,a_h,0): (a_1,\ldots, a_h) \in A_1 \times \cdots \times A_h\}.$
Comment: 10 pages
Keywords
Mathematics - Number Theory, Mathematics - Combinatorics, 11B34
Citation
Collections