Measuring eccentricity in binary black-hole initial data

Date
Authors
Grigsby, Jason D.
Cook, Gregory B.
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Initial data for evolving black-hole binaries can be constructed via many techniques, and can represent a wide range of physical scenarios. However, because of the way that different schemes parameterize the physical aspects of a configuration, it is not alway clear what a given set of initial data actually represents. This is especially important for quasiequilibrium data constructed using the conformal thin-sandwich approach. Most initial-data studies have focused on identifying data sets that represent binaries in quasi-circular orbits. In this paper, we consider initial-data sets representing equal-mass black holes binaries in eccentric orbits. We will show that effective-potential techniques can be used to calibrate initial data for black-hole binaries in eccentric orbits. We will also examine several different approaches, including post-Newtonian diagnostics, for measuring the eccentricity of an orbit. Finally, we propose the use of the ``Komar-mass difference'' as a useful, invariant means of parameterizing the eccentricity of relativistic orbits.
Comment: 12 pages, 11 figures, submitted to Physical Review D, revtex4
Keywords
General Relativity and Quantum Cosmology
Citation
Collections