Averaged null energy condition in Loop Quantum Cosmology

Date
Authors
Li, Li-Fang
Zhu, Jian-Yang
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Wormhole and time machine are very interesting objects in general relativity. However, they need exotic matters which are impossible in classical level to support them. But if we introduce the quantum effects of gravity into the stress-energy tensor, these peculiar objects can be constructed self-consistently. Fortunately, loop quantum cosmology (LQC) has the potential to serve as a bridge connecting the classical theory and quantum gravity. Therefore it provides a simple way for the study of quantum effect in the semiclassical case. As is well known, loop quantum cosmology is very successful to deal with the behavior of early universe. In the early stage, if taken the quantum effect into consideration, inflation is natural because of the violation of every kind of local energy conditions. Similar to the inflationary universe, the violation of the averaged null energy condition is the necessary condition for the traversable wormholes. In this paper, we investigate the averaged null energy condition in LQC in the framework of effective Hamiltonian, and find out that LQC do violate the averaged null energy condition in the massless scalar field coupled model.
Comment: 5 pages
Keywords
General Relativity and Quantum Cosmology
Citation
Collections